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Abstract

A subset A of a group G is complete (k, l)-sum-free if it has the following
two properties. (1) The sets of all possible sums of k and l elements in A are
disjoint, and (2) when combined, the set of all possible sums of k and l elements
contain every element in G. Our goal is to answer such questions as: ”In what
groups do complete (k, l)-sum-free sets exist?” among other questions in this
topic.

1 Introduction

The following definitions are essential to the contents of this paper.

Definition 1 The h-fold sumset of a set A is the set of all possible sums of h not
necessarily distinct elements in A. This is denoted as hA.

Definition 2 We say a set is (k, l)-sum-free if kA ∩ lA = ∅.

Definition 3 We say a set is complete (k, l)-sum-free if for a group G, A ⊂ G
kA ∩ lA = ∅ and kA ∪ lA = G.
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Definition 4 We will define the function ω(k, l) to be the largest n such that Zn

has no complete (k, l)-sum-free subset or ∞ if no such largest n exists.

There are not many previous results in this topic, but I feel this theorem from [1]
(which I have summarized and reworded for cyclic groups) is important to the topic.

Theorem 5 (Bajnok 2018) Let A be a maximum size (2, 1)-sum-free subset of
Zn. We have the following:

1. If n has a prime divisor congruent to 2 mod 3, then A is complete.

2. If n is divisible by 3 but has no prime divisors congruent to 2 mod 3, then A
is not complete.

3. If n has only prime divisors congruent to 1 mod 3 then for n > 7, then there
is a complete (2, 1)-sum-free set with size |A|.

2 Main results

In this paper there are many major and minor results, the significant begin of which
are listed here. With a provided lemma, Peter Francis [2] proved that if Zn0 contains
a complete (k, l)-sum-free subset, then so will Zn where n is some multiple of n0.

Proposition 6 (Francis) If n0 divides n and B is complete (k, l)-sum-free in Zn0,
then

A = B + n0 · Z n
n0

=

n/n0∪
i=0

Ai

is complete (k, l)-sum-free in Zn, where Ai = B + n0i for each i ∈ Z n
n0

.

Proposition 7 If n ̸∈ {1, 3, 7, 9} then Zn has a complete (2, 1)-sum-free set. This
gives ω(2, 1) = 9.

The majority of Proposition 7 follow from Theorem 5, but this Proposition completes
the classification of n for which Zn has no complete (2, 1)-sum-free subset. A second,
more original result is as follows
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Theorem 8 If n ̸∈ {1, 3, 5, 9, 11, 13, 15, 19, 31} then Zn has a complete (4, 1)-sum-
free set. This gives ω(4, 1) = 31

This result arises from a combination of constructions as well as computations to
verify that the groups listed above do not have any complete (4, 1)-sum-free sets.
The previous two results are rather specific, but we also have these much more
general results.

Theorem 9 For k = 2 mod 4, and k > 2, if

n ≥ k3 + k2 + 5k + 1

then Zn has a complete (k, 1)-sum-free subset. Or ω(k, 1) ≤ k3 + k2 + 5k with the
same restrictions on k.

A similar, yet improved result that utilized a vastly different proof method is

Theorem 10 When
n ≥

⌊
4k(k2 − 1)

k − 3

⌋
Zn has a complete (k, 1)-sum-free set for k = 0 mod 4. Or ω(k, 1) ≤

⌊
4k(k2−1)

k−3

⌋
− 1

for k = 0 mod 4.

When combined, we have the summarized result of

Corollary 11

ω(k, 1) ≤

{
k3 + k2 + 5k k = 2 mod 4⌊
4k(k2−1)

k−3

⌋
− 1 k = 0 mod 4

The final result I will share in this paper is the complete classification of (k, l)-sum-
free intervals.

Theorem 12 An interval is complete (k, l)-sum-free in Zn if and only if

A =

[
1

2

(
jn

gcd(n, k − l)
− n− 2

k + l

)
,
1

2

(
jn

gcd(n, k − l)
+

n− 2

k + l

)]
and all the following conditions hold
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1. j is odd

2. n−2
k+l is an integer

3. n is a multiple of 2B, where B is the largest non-negative integer such that
k−l
2B

is an integer.

4. n−2
k+l = jn

gcd(n,k−l) mod 2

3 Methods

We will begin with the proof for Proposition 6 that Peter Francis proved with the
help of this lemma.

Lemma 13 If n0 divides n and

A =

n/n0∪
i=0

B + n0i ⊂ Zn,

then for any l ∈ N,

lA =

n/n0∪
i=1

lB + n0i.

Proof of Lemma 13. If we take any a ∈ lA, we can find a1, . . . , al ∈ A that sum to
a, and for each j ∈ {1, . . . , l}, there is some bi ∈ B and some ij ∈ Zn/n0

such that
aj = bj + ijn0. Then

a =
l∑

j=1

aj =
l∑

j=1

bj + ijn0 =
l∑

j=1

bj + n0

l∑
j=1

ij .

Note that there is some iα ∈ Zn/n0
for which

iα ≡

 l∑
j=1

ij

 mod
n

n0
, so n0iα ≡

n0

l∑
j=1

ij

 mod n.

Then continuing the first centered equation above,

a =

 l∑
j=1

bj

+ n0iα ∈
n/n0∪
i=0

lB + n0i.
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Now if we take some b ∈
∪n/n0

i=0 lB + n0i, we can find b1, . . . , bl ∈ B and some
i ∈ Zn/n0

for which

b =

 l∑
j=1

bj

+ n0i =

 l−1∑
j=1

bj

+ (bl + n0i) ∈ lA.

■ We make use of this lemma in the proof for Proposition 6 below.

Proof of Proposition 6. Take any a1, . . . , ak ∈ A. Then there exist i1, . . . , ik ∈
Z n

n0
and b1, . . . , bk ∈ B such that for each j ∈ {1, . . . , k},

aj = bj + ijn0 ∈ Aij .

Since B is (k, l)-sum-free, k∑
j=1

aj

 mod n0 =

 k∑
j=1

bj

 mod n0 ̸∈ lB,

so
(∑k

j=1 aj

)
̸∈ lA by Lemma 13; thus kA ∩ lA = ∅.

Now take any g ∈ Zn \ lA. Then there exist unique q ∈ Z n
n0

and w ∈ Zn0 \ B
for which g = qn0 + w. Since B is complete, we can find b1, . . . , bk ∈ B such that

k∑
j=1

bj ≡ w mod n0.

Then
k∑

j=1

bj ∈ kA and

k−1∑
j=1

bj

+ (bk + yn0) = g,

for some 0 ≤ y ≤ q, so A is complete. ■

3.1 Specific values of k and l

We now move on to our proof of the rather simple Proposition 7.

Proof of Proposition 7. Consider the subset, A, of Zn where n is odd and
divisible by 3. Let 6q + 3 = n and A = [q, 2q − 1] ∪ [4q + 4, 5q + 3] Note that unless
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4q − 2 < 2q + 5 (n < 24) then A is both complete and sum-free. Furthermore, Z21

and Z15 have complete (2, 1)-sum-free sets {3, 4, 5, 16, 17, 18} and {1, 4, 6, 9, 11, 14}
respectively. When combined with Theorem 5 and computer verification, we find
that 1, 3, 7 and 9 are the only n for which Zn has no complete (2, 1)-sum-free subset
completing our proof. ■

Next on the list is the proof of Theorem 8.

Proof of Theorem 8 First, note that because {1} is complete (4, 1)-sum-free in
Z2, by Proposition 6 we only need to consider odd n. for which Zn may not have a
complete (4, 1)-sum-free set.

We have the following constructions:

1. A = [2q + 1, 3q + 1] is complete (4, 1) sum-free for n = 5q + 2.

2. A = [2q + 3, 3q] ∪ {2q + 1, 3q + 2} is complete (4, 1)-sum-free for n = 5q + 3
when n is odd with the exception of n = 3 and n = 13.

3. A = [2q+4, 3q+3]∪ [7q+6, 8q+5] is complete (4, 1)-sum-free for n = 10q+9
with the exception of n = 9 and n = 19.

4. A = [2q+4, 3q+1]∪ [7q+3, 8q− 3] is complete (4, 1)-sum-free for n = 10q+1
with the exception of n = 1, n = 11, n = 21, and n = 31 however 21 is divisible
by 7 which does have a complete (4, 1)-sum-free set, meaning it too has one.

5. A = [2q+4, 3q+2]∪ [7q+3, 8q+1] is complete (4, 1)-sum-free for n = 10q+5
with the exception of n = 5 and n = 15

The culminations of these constructions and checking these groups via computer
program complete our proof. ■

3.2 Upper Bounds on ω(k, 1)

The rest of the results presented have much more rigorous proofs, beginning with
Theorem 9.

Proof of Theorem 9. Let k be a natural number congruent to 2 mod 4. First,
note that because {1} is complete (k, 1)-sum-free for even k, we only need to consider
odd values of n.
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Let the set A, a subset of Zn be defined as

A =
[
n−2q−1−W

4 , n+2q−Wk+W−5
4

]
∪
[
3n−2q+Wk−W+5

4 , 3n+2q+1+W
4

]
Where n = 2q(k + 1) + k + W − 1, where W is an even non negative integer,

k = 2 mod 4, and q is an integer.

kA =
∪k

h=0

[
hn−2q−1−W

4 + (k − h)3n−2q+Wk−W+5
4 , hn+2q−Wk+W−5

4 + (k − h)3n+2q+1+W
4

]
kA =

∪k
h=0

[
−h2n+6+Wk

4 + k 3n−2q+Wk−W+5
4 ,−h2n+6+Wk

4 + k 3n+2q+1+W
4

]
Note that the difference between the upper and lower bounds of each of the intervals
kA is made up of is 4qk+2kW−4k−k2W

4 . For two intervals x = [Lx, Ux] and y = [Ly, Uy]
where Ux − Lx = Uy − Ly = D, if D + 1 ≥ Ux − Ly ≥ −1, then x ∪ y = [Lx, Uy].
Keeping this property in mind, if we take the difference of the upper bound of the
term in the big union for kA when h = t + 2 and the lower bound when h = t as
follows

−(t+ 2)2n+6+Wk
4 + k 3n+2q+1+W

4 −
(
−t2n+6+Wk

4 + k 3n−2q+Wk−W+5
4

)
=

4qk − 4k − k2W − 12

4

So when 4qk+2kW−4k−k2W
4 + 1 ≥ 4qk−4k−k2W−12

4 ≥ −1, (q ≥ k2W+8
4k + 1) we can

inductively conclude that all the terms in the union for kA with the same parity
create one large sequence, meaning

kA =
[
−k 2n+6+Wk

4 + k 3n−2q+Wk−W+5
4 , k 3n+2q+1+W

4

]
∪
[
−(k − 1)2n+6+Wk

4 + k 3n−2q+Wk−W+5
4 ,−2n+6+Wk

4 + k 3n+2q+1+W
4

]

kA =
[
n+2q−Wk+W−5

4 + 1, 3n−2q+Wk−W+5
4 − 1

]
∪
[
3n+W+2q+1

4 + 1, n−2q−W−1
4 − 1

]
It is now clear that A is complete (k, 1)-sum-free in Zn if q ≥ k2W+8

4k +1 or q ≥ kW
4 +1

for k > 2.

Because the case for k = 2 has already been fully solved, we will only consider
the case when k > 2. Note that W need not be greater than 2k, as subtracting 2k+2
from W and adding 1 to q will not alter the value of n. This means if we substitute
q for kW

4 + 1 and W for 2k in the formula n0 = 2q(k + 1) + k +W − 1 we can be
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sure that when every n greater than or equal to n0 has a complete (k, 1)-sum-free
subset and upon substitution we have

n0 = k3 + k2 + 5k + 1

which completes our proof. ■

Our next result is very similar to Theorem 9 but the technique is very different.

We will first use the following Lemma to assist us

Lemma 14 If a set of the form A = [a, b] ∪ [−b,−a] has the following properties
for a given positive integer n and k = 0 mod 4,

1. n
4 < b < kn

4k−4 , 1 < a < b

2. n− a− 2b ≥ (ka)

3. 0 ≥ n− 1− 2a− 2b

4. kn = 4kb− 4a+ 4

Then A is complete (k, 1)-sum-free in Zn

Proof of Lemma 14. Let A = [a, b] ∪ [−b,−a] be a set in Zn, with a < b. Let A
be complete (k, 1)-sum-free in Zn for k = 0 mod 4. Note that b < kn

4k−4 , because if
b ≥ kn

4k−4 then 0 ∈ (k − 1)A, which would mean A ⊂ kA, making A not sum-free.
Furthermore, we will assume that b ≥ n

4 . We can write kA as follows:

kA = [ka, kb] ∪ [ka− a− b, kb− b− a] ∪ [ka− 2a− 2b, kb− 2b− 2a] ∪ · · · ∪ [a− bk + b, b− ka+ a] ∪ [−kb,−ka]

Now, assume that every other interval (but not consecutive ones) in the represen-
tation for kA about intersects, and be cause k is even, we have that

kA = [−kb, kb] ∪ [a− bk + b, kb− b− a]

The conditions for every other interval to intersect are

(kb)− (ka) + 1 ≥ (kb− 2a− 2b)− (ka) ≥ −1

for consecutive ones to not intersect we must have that

(kb)− (ka) + 1 ̸≥ (kb− a− b)− (ka) ̸≥ −1
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. and for the set to be complete sum-free it must be true that kb + 1 = a mod n
and

n = (kb)− (−kb) + n+ 1 + 2b− 2a+ 2 + (kb− b− a)− (a− bk + b) + 1

(A quantity in parentheses means it is taken mod n) Going condition by condition,

(kb)− (ka) + 1 ≥ (kb− 2a− 2b)− (ka) ≥ −1

becomes (kb−2a−2b)−(ka) ≥ −1 and (kb)−(ka)+1 ≥ (kb−2a−2b)−(ka) which are
equivalent to n−a−2b ≥ (ka) and 0 ≥ n−1−2a−2b. Second, one of (kb)−(ka)+1 <
(kb− a− b)− (ka) or (kb− a− b)− (ka) < −1 must hold, and the first of the pair
simplifies to a+b < n+1, which is clearly always true, so we can ignore this condition.
The Condition n = (kb)− (−kb)+n+1+2b−2a+2+(kb− b−a)− (a− bk+ b)+1
is much more complex, however. The proscess for it’s simplification is below

n = (kb)− (−kb) + n+ 1 + 2b− 2a+ 2 + (kb− b− a)− (a− bk + b) + 1

0 = (kb)− (−kb) + 2b− 2a+ (kb− b− a)− (a− bk + b) + 4

0 = (kb)− (−kb) + 2b− 2a+ (kb)− b− a+ n− (bk)− a− b+ n+ 4

0 = 2(kb)− 2(−kb)− 4a+ 4 + 2n

(Parentheses no longer mean mod n)

0 = −2

(
−kb− n

⌊
−kb

n

⌋)
− 4a+ 4 + 2n

2n

⌊
kb

n

⌋
− 2n

⌊
−kb

n

⌋
− 2n = −4a+ 4 + 4kb

2n

⌊
kb

n

⌋
+ 2n

⌈
kb

n

⌉
− 2n = −4a+ 4 + 4kb

4n

⌊
kb

n

⌋
= −4a+ 4 + 4kb

Furthermore, since we have that n
4 ≤ b < kn

4k−4 , we have⌊
kn

4

⌋
≤

⌊
kb

4

⌋
≤

⌊
k2n

4kn− 4n

⌋
k

4
≤

⌊
kb

4

⌋
≤

⌊
k

4

k

k − 1

⌋
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Because k ≥ 4 we have
k

4
≤

⌊
kb

4

⌋
≤ k

4

Which makes our final condition,

kn = 4kb− 4a+ 4

Which means we have proven our lemma (Note, kb+1 = a mod n is implied by this
condition, as k = 0 mod 4). ■

From Lemma 14 we can now prove Theorem 10

Proof of Theorem 10. Taking our conditions from Lemma 14, we have that if a
set of the form A = [a, b] ∪ [−b,−a] has the following properties for a given integer
n and k = 0 mod 4,

1. n
4 < b < kn

4k−4 , 1 < a < b

2. n− a− 2b ≥ (ka)

3. 0 ≥ n− 1− 2a− 2b

4. kn = 4kb− 4a+ 4

Then A is complete (k, 1)-sum-free in Zn We will assume that a ≥ n
4 , and because

of that our second condition above becomes

b ≤
n− a− ka+ kn

4

2

. This guarantees condition three to hold as well, and condition one will hold as
long as n−a−ka+ kn

4
2 > kn

4k−4 or a < n
4
k2+k−4
k2−1

. This leaves us with the two conditions

1. n
4
k2+k−4
k2−1

> a ≥ n
4

2. kn = 4kb− 4a+ 4

Because there is always an integer solution to kn = 4kb − 4a + 4 every k integer
values of a (b increases by 1, and a increases by k), and the gap between n

4
k2+k−4
k2−1
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and n
4 increases for every n we have that if for an integer n0

n0
4

k2+k−4
k2−1

− n0
4 ≥ k

then for all n ≥ n0, n will have a complete (k, 1)-sum-free subset

n0

4

k2 + k − 4

k2 − 1
− n0

4
≥ k

Which simplifies to when k = 0 mod 4 and

n ≥
⌊
4k(k2 − 1)

k − 3

⌋
Zn has a complete (k, 1)-sum-free set, completing our proof. ■

3.3 Complete (k, l)-Sum-Free Intervals

Finally, we have the case for (k, l)-sum-free intervals. Before the proof for Theorem
12, we will first prove another Lemma.

Lemma 15 For any (k, l)-sum-free interval A = [x, y] ∈ Zn

1. y + x = 0 mod n
gcd(n,k−l)

2. (y − x)(k + l) + 2 = n

Proof of Lemma 15. Let A = [x, y] be a complete (k, l) sum-free interval in Zn.

1. Because A is complete, we have

|kA|+ |lA| = |Zn|

(ky − kx+ 1) + (ly − lx+ 1) = n

k(y − x) + l(y − x) + 2 = n

(y − x)(k + l) + 2 = n

2. WLOG, we can assume that ly + 1 = kx and ky + 1 = lx

ly + lx− ky = kx

ly − ky = kx− lx
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(k − l)y = −(k − l)x

(k − l)

gcd(n, k − l)
y =

−(k − l)

gcd(n, k − l)
x mod

n

gcd(n, k − l)

y = −x mod
n

gcd(n, k − l)

Finally we have that for an interval A = [x, y] ∈ Zn, if A is complete (k, l)-sum-free
then y + x = 0 mod n

gcd(n,k−l) and (y − x)(k + l) + 2 = n. ■

Now, we will assume these necessary conditions to be true of a set to find out
what other conditions must be met in the proof for Theorem 12.

Proof of Theorem 12. Let n, k and l be integers such that y + x = 0
mod n

gcd(n,k−l) and (y − x)(k + l) + 2 = n (The necessary conditions for an in-
terval [x, y] ∈ Zn to be complete (k, l) sum-free) From the first equation we have
y = jn

gcd(n,k−l) − x ,and for some integer j

y − x =
jn

gcd(n, k − l)
− 2x

jn

gcd(n, k − l)
− n− 2

k + l
= 2x

Because 2x is even, n−2
k+l = jn

gcd(n,k−l) mod 2.

1

2

(
jn

gcd(n, k − l)
− n− 2

k + l

)
= x

Now if we take the set

A =

[
1

2

(
jn

gcd(n, k − l)
− n− 2

k + l

)
,
1

2

(
jn

gcd(n, k − l)
+

n− 2

k + l

)]

kA =

[
k

2

(
jn

gcd(n, k − l)
− n− 2

k + l

)
,
k

2

(
jn

gcd(n, k − l)
+

n− 2

k + l

)]
lA =

[
l

2

(
jn

gcd(n, k − l)
− n− 2

k + l

)
,
l

2

(
jn

gcd(n, k − l)
+

n− 2

k + l

)]
A is complete (k, l) sum-free iff the following holds for some j (Arithmetic is now
mod n):

l

2

(
jn

gcd(n, k − l)
+

n− 2

k + l

)
+ 1 =

k

2

(
jn

gcd(n, k − l)
− n− 2

k + l

)
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kn− 2k

2k + 2l
+

ln− 2l

2k + 2l
+ 1 =

kjn

2 gcd(n, k − l)
− ljn

2 gcd(n, k − l)

kn− 2k

2k + 2l
+

ln− 2l

2k + 2l
+ 1 =

nj(k − l)

2 gcd(n, k − l)

kn− 2k

2k + 2l
+

ln− 2l

2k + 2l
+ 1 =

jlcm(n, k − l)

2

kn+ ln

2k + 2l
=

jlcm(n, k − l)

2

n

2
=

jlcm(n, k − l)

2

Similarly with we have

k

2

(
jn

gcd(n, k − l)
+

n− 2

k + l

)
+ 1 =

l

2

(
jn

gcd(n, k − l)
− n− 2

k + l

)
n

2
= −jlcm(n, k − l)

2

These equations will hold if and only if both of the following conditions is true

1. n is a multiple of 2B, where B is the largest non-negative integer such that
k−l
2B

is an integer

2. j is odd.

If and only if, in addition to the conditions from 15, the above two conditions and
n−2
k+l = jn

gcd(n,k−l) mod 2 hold, then the interval A is complete (k, l)-sum-free in Zn,
finishing our proof. ■

However, I would be remiss if I did not outline some of the consequences of
Theorem 12.

Corollary 16 When gcd(n, k − l) = 1, every complete (k, l)-sum-free arithmetic
progression in Zn is symmetric.

Corollary 17 There exists no arithmetic progression that is complete (k, l)-sum-free
when k and l are both even.
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Proof of Corollary 17. Let k and l be even positive integers. Note that every
arithmetic progression in Zn that is (k, l)-sum-free must be a dilation of an interval
as k = l mod 2

This means for a given Zn, k and l

k + l | n− 2

(meaning n is even) and
n− 2

k + l
=

n

gcd(n, k − l)
mod 2

Note that from here, if n = 0 mod 4, then the left side is odd, and the right side is
even, and it its reversed if n = 2 mod 4, and because n must be even, this equality
never holds and our proof is completed.

4 Future work

In regards to the unknown in this topic, there is still quite a lot. Below I have
outlined a few of the many questions I have.

Conjecture 18 ω(3, 1) ̸= ∞

When k + l = 0 mod 2 the values of n that do not have a complete (k, l)-sum-free
set are definitely much more common than the k+ l = 1 mod 2 case. In fact, there
is no complete (3, 1)-sum-free set for odd n until n = 35 with {4, 5, 9, 10, 11, 16}.
But, due to the exponentially increasing computation time when n get bigger, I
have yet to find another odd n not divisible by 35 for which Zn has a complete
(3, 1)-sum-free set. But I conjecture that eventually, such values of n will become
more and more common, and eventually there will be a finite value of ω(3, 1) such
that for all n > ω(3, 1), Zn has a complete (3, 1)-sum-free subset.

Conjecture 19 ω(4, 2) = ∞

My primary reason of believing this is Corollary 17.

Conjecture 20 Every complete (2, 1)-sum-free set is symmetric.
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This one I am not sure of. I would think that the proof for this would be rather
simple, but it has evaded me despite that fact that every complete (2, 1)-sum-free
set that I have seen is symmetric.

Problem 21 Find the minimum cardinality of a complete (2, 1)-sum-free set in Zn.

I have done relatively little investigation into this topic, but the patterns that appear
in these values are quite interesting.

Problem 22 Find more values or bounds on ω(k, l).

One way to accomplish the above task is to see that the bound ω(k, 1) when k = 0
mod 4 grows much slower than the one I found for k = 2 mod 4. So it is very
realistic to ask

Problem 23 Find a better upper bound on ω(k, 1) for k = 2 mod 4 by using the
technique used to prove Theorem 10.
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