An Investigation Into Complete (k, l)-Sum-Free Sets

Jacob Terkel
Department of Mathematics, Gettysburg College
Gettysburg, PA 17325-1486 USA
E-mail: terkja01@gettysburg.edu

May 14, 2021

Abstract

A subset A of a group G is complete (k, l)-sum-free if it has the following two properties. (1) The sets of all possible sums of k and l elements in A are disjoint, and (2) when combined, the set of all possible sums of k and l elements contain every element in G. Our goal is to answer such questions as: "In what groups do complete (k, l)-sum-free sets exist?" among other questions in this topic.

1 Introduction

The following definitions are essential to the contents of this paper.

Definition 1 The h-fold sumset of a set A is the set of all possible sums of h not necessarily distinct elements in A. This is denoted as $h A$.

Definition 2 We say a set is (k, l)-sum-free if $k A \cap l A=\emptyset$.

Definition 3 We say a set is complete (k, l)-sum-free if for a group $G, A \subset G$ $k A \cap l A=\emptyset$ and $k A \cup l A=G$.

Definition 4 We will define the function $\omega(k, l)$ to be the largest n such that \mathbb{Z}_{n} has no complete (k, l)-sum-free subset or ∞ if no such largest n exists.

There are not many previous results in this topic, but I feel this theorem from [1] (which I have summarized and reworded for cyclic groups) is important to the topic.

Theorem 5 (Bajnok 2018) Let A be a maximum size (2,1)-sum-free subset of \mathbb{Z}_{n}. We have the following:

1. If n has a prime divisor congruent to $2 \bmod 3$, then A is complete.
2. If n is divisible by 3 but has no prime divisors congruent to 2 mod 3, then A is not complete.
3. If n has only prime divisors congruent to 1 mod 3 then for $n>7$, then there is a complete $(2,1)$-sum-free set with size $|A|$.

2 Main results

In this paper there are many major and minor results, the significant begin of which are listed here. With a provided lemma, Peter Francis [2] proved that if $\mathbb{Z}_{n_{0}}$ contains a complete (k, l)-sum-free subset, then so will \mathbb{Z}_{n} where n is some multiple of n_{0}.

Proposition 6 (Francis) If n_{0} divides n and B is complete (k, l)-sum-free in $\mathbb{Z}_{n_{0}}$, then

$$
A=B+n_{0} \cdot \mathbb{Z}_{\frac{n}{n_{0}}}=\bigcup_{i=0}^{n / n_{0}} A_{i}
$$

is complete (k, l)-sum-free in \mathbb{Z}_{n}, where $A_{i}=B+n_{0} i$ for each $i \in \mathbb{Z}_{\frac{n}{n_{0}}}$.

Proposition 7 If $n \notin\{1,3,7,9\}$ then \mathbb{Z}_{n} has a complete (2,1)-sum-free set. This gives $\omega(2,1)=9$.

The majority of Proposition 7 follow from Theorem 5, but this Proposition completes the classification of n for which \mathbb{Z}_{n} has no complete (2,1)-sum-free subset. A second, more original result is as follows

Theorem 8 If $n \notin\{1,3,5,9,11,13,15,19,31\}$ then \mathbb{Z}_{n} has a complete $(4,1)$-sumfree set. This gives $\omega(4,1)=31$

This result arises from a combination of constructions as well as computations to verify that the groups listed above do not have any complete $(4,1)$-sum-free sets. The previous two results are rather specific, but we also have these much more general results.

Theorem 9 For $k=2 \bmod 4$, and $k>2$, if

$$
n \geq k^{3}+k^{2}+5 k+1
$$

then \mathbb{Z}_{n} has a complete $(k, 1)$-sum-free subset. Or $\omega(k, 1) \leq k^{3}+k^{2}+5 k$ with the same restrictions on k.

A similar, yet improved result that utilized a vastly different proof method is

Theorem 10 When

$$
n \geq\left\lfloor\frac{4 k\left(k^{2}-1\right)}{k-3}\right\rfloor
$$

\mathbb{Z}_{n} has a complete $(k, 1)$-sum-free set for $k=0 \bmod 4$. Or $\omega(k, 1) \leq\left\lfloor\frac{4 k\left(k^{2}-1\right)}{k-3}\right\rfloor-1$ for $k=0 \bmod 4$.

When combined, we have the summarized result of

Corollary 11

$$
\omega(k, 1) \leq \begin{cases}k^{3}+k^{2}+5 k & k=2 \bmod 4 \\ \left\lfloor\frac{4 k\left(k^{2}-1\right)}{k-3}\right\rfloor-1 & k=0 \bmod 4\end{cases}
$$

The final result I will share in this paper is the complete classification of (k, l)-sumfree intervals.

Theorem 12 An interval is complete (k, l)-sum-free in \mathbb{Z}_{n} if and only if

$$
A=\left[\frac{1}{2}\left(\frac{j n}{\operatorname{gcd}(n, k-l)}-\frac{n-2}{k+l}\right), \frac{1}{2}\left(\frac{j n}{\operatorname{gcd}(n, k-l)}+\frac{n-2}{k+l}\right)\right]
$$

and all the following conditions hold

1. j is odd
2. $\frac{n-2}{k+l}$ is an integer
3. n is a multiple of 2^{B}, where B is the largest non-negative integer such that $\frac{k-l}{2^{B}}$ is an integer.
4. $\frac{n-2}{k+l}=\frac{j n}{\operatorname{gcd}(n, k-l)} \bmod 2$

3 Methods

We will begin with the proof for Proposition 6 that Peter Francis proved with the help of this lemma.

Lemma 13 If n_{0} divides n and

$$
A=\bigcup_{i=0}^{n / n_{0}} B+n_{0} i \subset \mathbb{Z}_{n},
$$

then for any $l \in \mathbb{N}$,

$$
l A=\bigcup_{i=1}^{n / n_{0}} l B+n_{0} i .
$$

Proof of Lemma 13. If we take any $a \in l A$, we can find $a_{1}, \ldots, a_{l} \in A$ that sum to a, and for each $j \in\{1, \ldots, l\}$, there is some $b_{i} \in B$ and some $i_{j} \in \mathbb{Z}_{n / n_{0}}$ such that $a_{j}=b_{j}+i_{j} n_{0}$. Then

$$
a=\sum_{j=1}^{l} a_{j}=\sum_{j=1}^{l} b_{j}+i_{j} n_{0}=\sum_{j=1}^{l} b_{j}+n_{0} \sum_{j=1}^{l} i_{j} .
$$

Note that there is some $i_{\alpha} \in \mathbb{Z}_{n / n_{0}}$ for which

$$
i_{\alpha} \equiv\left(\sum_{j=1}^{l} i_{j}\right) \bmod \frac{n}{n_{0}}, \quad \text { so } \quad n_{0} i_{\alpha} \equiv\left(n_{0} \sum_{j=1}^{l} i_{j}\right) \bmod n .
$$

Then continuing the first centered equation above,

$$
a=\left(\sum_{j=1}^{l} b_{j}\right)+n_{0} i_{\alpha} \in \bigcup_{i=0}^{n / n_{0}} l B+n_{0} i .
$$

Now if we take some $b \in \bigcup_{i=0}^{n / n_{0}} l B+n_{0} i$, we can find $b_{1}, \ldots, b_{l} \in B$ and some $i \in \mathbb{Z}_{n / n_{0}}$ for which

$$
b=\left(\sum_{j=1}^{l} b_{j}\right)+n_{0} i=\left(\sum_{j=1}^{l-1} b_{j}\right)+\left(b_{l}+n_{0} i\right) \in l A .
$$

■ We make use of this lemma in the proof for Proposition 6 below.
Proof of Proposition 6. Take any $a_{1}, \ldots, a_{k} \in A$. Then there exist $i_{1}, \ldots, i_{k} \in$ $\mathbb{Z}_{\frac{n}{n_{0}}}$ and $b_{1}, \ldots, b_{k} \in B$ such that for each $j \in\{1, \ldots, k\}$,

$$
a_{j}=b_{j}+i_{j} n_{0} \in A_{i_{j}} .
$$

Since B is (k, l)-sum-free,

$$
\left(\sum_{j=1}^{k} a_{j}\right) \bmod n_{0}=\left(\sum_{j=1}^{k} b_{j}\right) \bmod n_{0} \notin l B,
$$

so $\left(\sum_{j=1}^{k} a_{j}\right) \notin l A$ by Lemma 13; thus $k A \cap l A=\emptyset$.
Now take any $g \in \mathbb{Z}_{n} \backslash l A$. Then there exist unique $q \in \mathbb{Z}_{\frac{n}{n_{0}}}$ and $w \in \mathbb{Z}_{n_{0}} \backslash B$ for which $g=q n_{0}+w$. Since B is complete, we can find $b_{1}, \ldots, b_{k} \in B$ such that

$$
\sum_{j=1}^{k} b_{j} \equiv w \quad \bmod n_{0}
$$

Then

$$
\sum_{j=1}^{k} b_{j} \in k A \quad \text { and } \quad\left(\sum_{j=1}^{k-1} b_{j}\right)+\left(b_{k}+y n_{0}\right)=g
$$

for some $0 \leq y \leq q$, so A is complete.

3.1 Specific values of k and l

We now move on to our proof of the rather simple Proposition 7 .
Proof of Proposition \mathbb{Z}. Consider the subset, A, of \mathbb{Z}_{n} where n is odd and divisible by 3 . Let $6 q+3=n$ and $A=[q, 2 q-1] \cup[4 q+4,5 q+3]$ Note that unless
$4 q-2<2 q+5(n<24)$ then A is both complete and sum-free. Furthermore, \mathbb{Z}_{21} and \mathbb{Z}_{15} have complete (2,1)-sum-free sets $\{3,4,5,16,17,18\}$ and $\{1,4,6,9,11,14\}$ respectively. When combined with Theorem 5 and computer verification, we find that $1,3,7$ and 9 are the only n for which \mathbb{Z}_{n} has no complete (2,1)-sum-free subset completing our proof.

Next on the list is the proof of Theorem 8 .
Proof of Theorem $\&$ First, note that because $\{1\}$ is complete $(4,1)$-sum-free in \mathbb{Z}_{2}, by Proposition 6 we only need to consider odd n. for which \mathbb{Z}_{n} may not have a complete (4,1)-sum-free set.

We have the following constructions:

1. $A=[2 q+1,3 q+1]$ is complete $(4,1)$ sum-free for $n=5 q+2$.
2. $A=[2 q+3,3 q] \cup\{2 q+1,3 q+2\}$ is complete (4,1)-sum-free for $n=5 q+3$ when n is odd with the exception of $n=3$ and $n=13$.
3. $A=[2 q+4,3 q+3] \cup[7 q+6,8 q+5]$ is complete (4, 1)-sum-free for $n=10 q+9$ with the exception of $n=9$ and $n=19$.
4. $A=[2 q+4,3 q+1] \cup[7 q+3,8 q-3]$ is complete (4, 1)-sum-free for $n=10 q+1$ with the exception of $n=1, n=11, n=21$, and $n=31$ however 21 is divisible by 7 which does have a complete $(4,1)$-sum-free set, meaning it too has one.
5. $A=[2 q+4,3 q+2] \cup[7 q+3,8 q+1]$ is complete (4,1)-sum-free for $n=10 q+5$ with the exception of $n=5$ and $n=15$

The culminations of these constructions and checking these groups via computer program complete our proof.

3.2 Upper Bounds on $\omega(k, 1)$

The rest of the results presented have much more rigorous proofs, beginning with Theorem 9 .

Proof of Theorem 5. Let k be a natural number congruent to $2 \bmod 4$. First, note that because $\{1\}$ is complete $(k, 1)$-sum-free for even k, we only need to consider odd values of n.

Let the set A, a subset of \mathbb{Z}_{n} be defined as
$A=\left[\frac{n-2 q-1-\mathcal{W}}{4}, \frac{n+2 q-\mathcal{W} k+\mathcal{W}-5}{4}\right] \cup\left[\frac{3 n-2 q+\mathcal{W} k-\mathcal{W}+5}{4}, \frac{3 n+2 q+1+\mathcal{W}}{4}\right]$

Where $n=2 q(k+1)+k+\mathcal{W}-1$, where \mathcal{W} is an even non negative integer, $k=2 \bmod 4$, and q is an integer.
$k A=\bigcup_{h=0}^{k}\left[h \frac{n-2 q-1-\mathcal{W}}{4}+(k-h) \frac{3 n-2 q+\mathcal{W} k-\mathcal{W}+5}{4}, h \frac{n+2 q-\mathcal{W} k+\mathcal{W}-5}{4}+(k-h) \frac{3 n+2 q+1+\mathcal{W}}{4}\right]$
$k A=\bigcup_{h=0}^{k}\left[-h \frac{2 n+6+\mathcal{W} k}{4}+k \frac{3 n-2 q+\mathcal{W} k-\mathcal{W}+5}{4},-h \frac{2 n+6+\mathcal{W} k}{4}+k \frac{3 n+2 q+1+\mathcal{W}}{4}\right]$
Note that the difference between the upper and lower bounds of each of the intervals $k A$ is made up of is $\frac{4 q k+2 k \mathcal{W}-4 k-k^{2} \mathcal{W}}{4}$. For two intervals $x=\left[L_{x}, U_{x}\right]$ and $y=\left[L_{y}, U_{y}\right]$ where $U_{x}-L_{x}=U_{y}-L_{y}=D$, if $D+1 \geq U_{x}-L_{y} \geq-1$, then $x \cup y=\left[L_{x}, U_{y}\right]$. Keeping this property in mind, if we take the difference of the upper bound of the term in the big union for $k A$ when $h=t+2$ and the lower bound when $h=t$ as follows

$$
\begin{gathered}
-(t+2) \frac{2 n+6+\mathcal{W} k}{4}+k \frac{3 n+2 q+1+\mathcal{W}}{4}-\left(-t \frac{2 n+6+\mathcal{W} k}{4}+k \frac{3 n-2 q+\mathcal{W} k-\mathcal{W}+5}{4}\right) \\
=\frac{4 q k-4 k-k^{2} \mathcal{W}-12}{4}
\end{gathered}
$$

So when $\frac{4 q k+2 k \mathcal{W}-4 k-k^{2} \mathcal{W}}{4}+1 \geq \frac{4 q k-4 k-k^{2} \mathcal{W}-12}{4} \geq-1,\left(q \geq \frac{k^{2} \mathcal{W}+8}{4 k}+1\right)$ we can inductively conclude that all the terms in the union for $k A$ with the same parity create one large sequence, meaning
$k A=\left[-k \frac{2 n+6+\mathcal{W} k}{4}+k \frac{3 n-2 q+\mathcal{W} k-\mathcal{W}+5}{4}, k \frac{3 n+2 q+1+\mathcal{W}}{4}\right] \cup\left[-(k-1) \frac{2 n+6+\mathcal{W} k}{4}+k \frac{3 n-2 q+\mathcal{W} k-\mathcal{W}+5}{4},-\frac{2 n+6+\mathcal{W} k}{4}+k \frac{3 n+2 q+1+\mathcal{W}}{4}\right]$
$k A=\left[\frac{n+2 q-\mathcal{W} k+\mathcal{W}-5}{4}+1, \frac{3 n-2 q+\mathcal{W} k-\mathcal{W}+5}{4}-1\right] \cup\left[\frac{3 n+\mathcal{W}+2 q+1}{4}+1, \frac{n-2 q-\mathcal{W}-1}{4}-1\right]$
It is now clear that A is complete ($k, 1$)-sum-free in \mathbb{Z}_{n} if $q \geq \frac{k^{2} \mathcal{W}+8}{4 k}+1$ or $q \geq \frac{k W}{4}+1$ for $k>2$.

Because the case for $k=2$ has already been fully solved, we will only consider the case when $k>2$. Note that \mathcal{W} need not be greater than $2 k$, as subtracting $2 k+2$ from \mathcal{W} and adding 1 to q will not alter the value of n. This means if we substitute q for $\frac{k W}{4}+1$ and \mathcal{W} for $2 k$ in the formula $n_{0}=2 q(k+1)+k+\mathcal{W}-1$ we can be
sure that when every n greater than or equal to n_{0} has a complete ($k, 1$)-sum-free subset and upon substitution we have

$$
n_{0}=k^{3}+k^{2}+5 k+1
$$

which completes our proof.
Our next result is very similar to Theorem 9 but the technique is very different.
We will first use the following Lemma to assist us

Lemma 14 If a set of the form $A=[a, b] \cup[-b,-a]$ has the following properties for a given positive integer n and $k=0 \bmod 4$,

1. $\frac{n}{4}<b<\frac{k n}{4 k-4}, 1<a<b$
2. $n-a-2 b \geq(k a)$
3. $0 \geq n-1-2 a-2 b$
4. $k n=4 k b-4 a+4$

Then A is complete ($k, 1$)-sum-free in \mathbb{Z}_{n}

Proof of Lemma 14. Let $A=[a, b] \cup[-b,-a]$ be a set in \mathbb{Z}_{n}, with $a<b$. Let A be complete $(k, 1)$-sum-free in \mathbb{Z}_{n} for $k=0 \bmod 4$. Note that $b<\frac{k n}{4 k-4}$, because if $b \geq \frac{k n}{4 k-4}$ then $0 \in(k-1) A$, which would mean $A \subset k A$, making A not sum-free. Furthermore, we will assume that $b \geq \frac{n}{4}$. We can write $k A$ as follows:
$k A=[k a, k b] \cup[k a-a-b, k b-b-a] \cup[k a-2 a-2 b, k b-2 b-2 a] \cup \cdots \cup[a-b k+b, b-k a+a] \cup[-k b,-k a]$
Now, assume that every other interval (but not consecutive ones) in the representation for $k A$ about intersects, and be cause k is even, we have that

$$
k A=[-k b, k b] \cup[a-b k+b, k b-b-a]
$$

The conditions for every other interval to intersect are

$$
(k b)-(k a)+1 \geq(k b-2 a-2 b)-(k a) \geq-1
$$

for consecutive ones to not intersect we must have that

$$
(k b)-(k a)+1 \nsupseteq(k b-a-b)-(k a) \nsupseteq-1
$$

. and for the set to be complete sum-free it must be true that $k b+1=a \bmod n$ and

$$
n=(k b)-(-k b)+n+1+2 b-2 a+2+(k b-b-a)-(a-b k+b)+1
$$

(A quantity in parentheses means it is taken $\bmod n$) Going condition by condition,

$$
(k b)-(k a)+1 \geq(k b-2 a-2 b)-(k a) \geq-1
$$

becomes $(k b-2 a-2 b)-(k a) \geq-1$ and $(k b)-(k a)+1 \geq(k b-2 a-2 b)-(k a)$ which are equivalent to $n-a-2 b \geq(k a)$ and $0 \geq n-1-2 a-2 b$. Second, one of $(k b)-(k a)+1<$ $(k b-a-b)-(k a)$ or $(k b-a-b)-(k a)<-1$ must hold, and the first of the pair simplifies to $a+b<n+1$, which is clearly always true, so we can ignore this condition. The Condition $n=(k b)-(-k b)+n+1+2 b-2 a+2+(k b-b-a)-(a-b k+b)+1$ is much more complex, however. The proscess for it's simplification is below

$$
\begin{gathered}
n=(k b)-(-k b)+n+1+2 b-2 a+2+(k b-b-a)-(a-b k+b)+1 \\
0=(k b)-(-k b)+2 b-2 a+(k b-b-a)-(a-b k+b)+4 \\
0=(k b)-(-k b)+2 b-2 a+(k b)-b-a+n-(b k)-a-b+n+4 \\
0=2(k b)-2(-k b)-4 a+4+2 n
\end{gathered}
$$

(Parentheses no longer mean $\bmod n$)

$$
\begin{gathered}
0=-2\left(-k b-n\left\lfloor\frac{-k b}{n}\right\rfloor\right)-4 a+4+2 n \\
2 n\left\lfloor\frac{k b}{n}\right\rfloor-2 n\left\lfloor\frac{-k b}{n}\right\rfloor-2 n=-4 a+4+4 k b \\
2 n\left\lfloor\frac{k b}{n}\right\rfloor+2 n\left\lfloor\frac{k b}{n}\right\rfloor-2 n=-4 a+4+4 k b \\
4 n\left\lfloor\frac{k b}{n}\right\rfloor=-4 a+4+4 k b
\end{gathered}
$$

Furthermore, since we have that $\frac{n}{4} \leq b<\frac{k n}{4 k-4}$, we have

$$
\left.\begin{array}{rl}
\left\lfloor\frac{k n}{4}\right\rfloor & \leq\left\lfloor\frac{k b}{4}\right\rfloor
\end{array} \leq\left\lfloor\frac{k^{2} n}{4 k n-4 n}\right\rfloor\right]
$$

Because $k \geq 4$ we have

$$
\frac{k}{4} \leq\left\lfloor\frac{k b}{4}\right\rfloor \leq \frac{k}{4}
$$

Which makes our final condition,

$$
k n=4 k b-4 a+4
$$

Which means we have proven our lemma (Note, $k b+1=a \bmod n$ is implied by this condition, as $k=0 \bmod 4$).

From Lemma 14 we can now prove Theorem 10
Proof of Theorem 10. Taking our conditions from Lemma 14, we have that if a set of the form $A=[a, b] \cup[-b,-a]$ has the following properties for a given integer n and $k=0 \bmod 4$,

1. $\frac{n}{4}<b<\frac{k n}{4 k-4}, 1<a<b$
2. $n-a-2 b \geq(k a)$
3. $0 \geq n-1-2 a-2 b$
4. $k n=4 k b-4 a+4$

Then A is complete ($k, 1$)-sum-free in \mathbb{Z}_{n} We will assume that $a \geq \frac{n}{4}$, and because of that our second condition above becomes

$$
b \leq \frac{n-a-k a+\frac{k n}{4}}{2}
$$

. This guarantees condition three to hold as well, and condition one will hold as long as $\frac{n-a-k a+\frac{k n}{4}}{2}>\frac{k n}{4 k-4}$ or $a<\frac{n}{4} \frac{k^{2}+k-4}{k^{2}-1}$. This leaves us with the two conditions

1. $\frac{n}{4} \frac{k^{2}+k-4}{k^{2}-1}>a \geq \frac{n}{4}$
2. $k n=4 k b-4 a+4$

Because there is always an integer solution to $k n=4 k b-4 a+4$ every k integer values of a (b increases by 1 , and a increases by k), and the gap between $\frac{n}{4} \frac{k^{2}+k-4}{k^{2}-1}$
and $\frac{n}{4}$ increases for every n we have that if for an integer $n_{0} \frac{n_{0}}{4} \frac{k^{2}+k-4}{k^{2}-1}-\frac{n_{0}}{4} \geq k$ then for all $n \geq n_{0}, n$ will have a complete ($k, 1$)-sum-free subset

$$
\frac{n_{0}}{4} \frac{k^{2}+k-4}{k^{2}-1}-\frac{n_{0}}{4} \geq k
$$

Which simplifies to when $k=0 \bmod 4$ and

$$
n \geq\left\lfloor\frac{4 k\left(k^{2}-1\right)}{k-3}\right\rfloor
$$

\mathbb{Z}_{n} has a complete $(k, 1)$-sum-free set, completing our proof.

3.3 Complete (k, l)-Sum-Free Intervals

Finally, we have the case for (k, l)-sum-free intervals. Before the proof for Theorem 12, we will first prove another Lemma.

Lemma 15 For any (k, l)-sum-free interval $A=[x, y] \in \mathbb{Z}_{n}$

1. $y+x=0 \bmod \frac{n}{\operatorname{gcd}(n, k-l)}$
2. $(y-x)(k+l)+2=n$

Proof of Lemma 15. Let $A=[x, y]$ be a complete (k, l) sum-free interval in \mathbb{Z}_{n}.

1. Because A is complete, we have

$$
\begin{gathered}
|k A|+|l A|=\left|\mathbb{Z}_{n}\right| \\
(k y-k x+1)+(l y-l x+1)=n \\
k(y-x)+l(y-x)+2=n \\
(y-x)(k+l)+2=n
\end{gathered}
$$

2. WLOG, we can assume that $l y+1=k x$ and $k y+1=l x$

$$
\begin{aligned}
& l y+l x-k y=k x \\
& l y-k y=k x-l x
\end{aligned}
$$

$$
\begin{gathered}
(k-l) y=-(k-l) x \\
\frac{(k-l)}{\operatorname{gcd}(n, k-l)} y=\frac{-(k-l)}{\operatorname{gcd}(n, k-l)} x \quad \bmod \frac{n}{\operatorname{gcd}(n, k-l)} \\
y=-x \quad \bmod \frac{n}{\operatorname{gcd}(n, k-l)}
\end{gathered}
$$

Finally we have that for an interval $A=[x, y] \in \mathbb{Z}_{n}$, if A is complete (k, l)-sum-free then $y+x=0 \bmod \frac{n}{\operatorname{gcd}(n, k-l)}$ and $(y-x)(k+l)+2=n$.

Now, we will assume these necessary conditions to be true of a set to find out what other conditions must be met in the proof for Theorem 12 .

Proof of Theorem 12. Let n, k and l be integers such that $y+x=0$ $\bmod \frac{n}{\operatorname{gcd}(n, k-l)}$ and $(y-x)(k+l)+2=n$ (The necessary conditions for an interval $[x, y] \in \mathbb{Z}_{n}$ to be complete (k, l) sum-free) From the first equation we have $y=\frac{j n}{\operatorname{gcd}(n, k-l)}-x$, and for some integer j

$$
\begin{aligned}
& y-x=\frac{j n}{\operatorname{gcd}(n, k-l)}-2 x \\
& \frac{j n}{\operatorname{gcd}(n, k-l)}-\frac{n-2}{k+l}=2 x
\end{aligned}
$$

Because $2 x$ is even, $\frac{n-2}{k+l}=\frac{j n}{\operatorname{gcd}(n, k-l)} \bmod 2$.

$$
\frac{1}{2}\left(\frac{j n}{\operatorname{gcd}(n, k-l)}-\frac{n-2}{k+l}\right)=x
$$

Now if we take the set

$$
\begin{aligned}
A & =\left[\frac{1}{2}\left(\frac{j n}{\operatorname{gcd}(n, k-l)}-\frac{n-2}{k+l}\right), \frac{1}{2}\left(\frac{j n}{\operatorname{gcd}(n, k-l)}+\frac{n-2}{k+l}\right)\right] \\
k A & =\left[\frac{k}{2}\left(\frac{j n}{\operatorname{gcd}(n, k-l)}-\frac{n-2}{k+l}\right), \frac{k}{2}\left(\frac{j n}{\operatorname{gcd}(n, k-l)}+\frac{n-2}{k+l}\right)\right] \\
l A & =\left[\frac{l}{2}\left(\frac{j n}{\operatorname{gcd}(n, k-l)}-\frac{n-2}{k+l}\right), \frac{l}{2}\left(\frac{j n}{\operatorname{gcd}(n, k-l)}+\frac{n-2}{k+l}\right)\right]
\end{aligned}
$$

A is complete (k, l) sum-free iff the following holds for some j (Arithmetic is now $\bmod n$):

$$
\frac{l}{2}\left(\frac{j n}{\operatorname{gcd}(n, k-l)}+\frac{n-2}{k+l}\right)+1=\frac{k}{2}\left(\frac{j n}{\operatorname{gcd}(n, k-l)}-\frac{n-2}{k+l}\right)
$$

$$
\begin{gathered}
\frac{k n-2 k}{2 k+2 l}+\frac{l n-2 l}{2 k+2 l}+1=\frac{k j n}{2 \operatorname{gcd}(n, k-l)}-\frac{l j n}{2 \operatorname{gcd}(n, k-l)} \\
\frac{k n-2 k}{2 k+2 l}+\frac{l n-2 l}{2 k+2 l}+1=\frac{n j(k-l)}{2 \operatorname{gcd}(n, k-l)} \\
\frac{k n-2 k}{2 k+2 l}+\frac{l n-2 l}{2 k+2 l}+1=\frac{j \operatorname{lcm}(n, k-l)}{2} \\
\frac{k n+l n}{2 k+2 l}=\frac{j \operatorname{lcm}(n, k-l)}{2} \\
\frac{n}{2}=\frac{j \operatorname{lcm}(n, k-l)}{2}
\end{gathered}
$$

Similarly with we have

$$
\begin{gathered}
\frac{k}{2}\left(\frac{j n}{\operatorname{gcd}(n, k-l)}+\frac{n-2}{k+l}\right)+1=\frac{l}{2}\left(\frac{j n}{\operatorname{gcd}(n, k-l)}-\frac{n-2}{k+l}\right) \\
\frac{n}{2}=-\frac{j \operatorname{lcm}(n, k-l)}{2}
\end{gathered}
$$

These equations will hold if and only if both of the following conditions is true

1. n is a multiple of 2^{B}, where B is the largest non-negative integer such that $\frac{k-l}{2^{B}}$ is an integer
2. j is odd.

If and only if, in addition to the conditions from 15, the above two conditions and $\frac{n-2}{k+l}=\frac{j n}{\operatorname{gcd}(n, k-l)} \bmod 2$ hold, then the interval A is complete (k, l)-sum-free in \mathbb{Z}_{n}, finishing our proof.

However, I would be remiss if I did not outline some of the consequences of Theorem 12 .

Corollary 16 When $\operatorname{gcd}(n, k-l)=1$, every complete (k, l)-sum-free arithmetic progression in \mathbb{Z}_{n} is symmetric.

Corollary 17 There exists no arithmetic progression that is complete (k, l)-sum-free when k and l are both even.

Proof of Corollary 17. Let k and l be even positive integers. Note that every arithmetic progression in \mathbb{Z}_{n} that is (k, l)-sum-free must be a dilation of an interval as $k=l \bmod 2$

This means for a given \mathbb{Z}_{n}, k and l

$$
k+l \mid n-2
$$

(meaning n is even) and

$$
\frac{n-2}{k+l}=\frac{n}{\operatorname{gcd}(n, k-l)} \quad \bmod 2
$$

Note that from here, if $n=0 \bmod 4$, then the left side is odd, and the right side is even, and it its reversed if $n=2 \bmod 4$, and because n must be even, this equality never holds and our proof is completed.

4 Future work

In regards to the unknown in this topic, there is still quite a lot. Below I have outlined a few of the many questions I have.

Conjecture $18 \omega(3,1) \neq \infty$

When $k+l=0 \bmod 2$ the values of n that do not have a complete (k, l)-sum-free set are definitely much more common than the $k+l=1 \bmod 2$ case. In fact, there is no complete (3,1)-sum-free set for odd n until $n=35$ with $\{4,5,9,10,11,16\}$. But, due to the exponentially increasing computation time when n get bigger, I have yet to find another odd n not divisible by 35 for which \mathbb{Z}_{n} has a complete $(3,1)$-sum-free set. But I conjecture that eventually, such values of n will become more and more common, and eventually there will be a finite value of $\omega(3,1)$ such that for all $n>\omega(3,1), \mathbb{Z}_{n}$ has a complete $(3,1)$-sum-free subset.

Conjecture $19 \omega(4,2)=\infty$

My primary reason of believing this is Corollary 17.

Conjecture 20 Every complete (2,1)-sum-free set is symmetric.

This one I am not sure of. I would think that the proof for this would be rather simple, but it has evaded me despite that fact that every complete $(2,1)$-sum-free set that I have seen is symmetric.

Problem 21 Find the minimum cardinality of a complete (2,1)-sum-free set in \mathbb{Z}_{n}.

I have done relatively little investigation into this topic, but the patterns that appear in these values are quite interesting.

Problem 22 Find more values or bounds on $\omega(k, l)$.

One way to accomplish the above task is to see that the bound $\omega(k, 1)$ when $k=0$ $\bmod 4$ grows much slower than the one I found for $k=2 \bmod 4$. So it is very realistic to ask

Problem 23 Find a better upper bound on $\omega(k, 1)$ for $k=2$ mod 4 by using the technique used to prove Theorem 10.

Acknowledgments. I would like to thank Peter Francis and Matt Torrence for their general help and advice, and a massive thanks to Professor Bajnok for making this all possible and for all the support in general.

References

[1] B. Bajnok Additive Combinatorics A Menu of Research Problems CRC Press, Boca Raton, 2018, p.284,
[2] P. Francis. Personal Communication.

